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The Atkinson-Prufer transformation and the eigenvalue 
problem for coupled systems of Schrodinger equations 

D Adamova, J HoiejSit and I Ulehla 
Nuclear Center, Faculty of Mathematics and Physics, Charles University, V HoleSoviEkich 
2, 180 00 Prague 8, Czechoslovakia 

Received 23 January 1984 

Abstract. The matrix generalisation of the Priifer transformation introduced by Atkinson 
is applied to a coupled system of radial Schrodinger equations. It is shown that the phase 
functions corresponding to the matrix case exhibit properties analogous to those of the 
Priifer phase function encountered in the scalar case. Rigorous theorems are established 
which allow us to deteraine the eigenvalues of the original Schrodinger system with an 
arbitrary accuracy provided that the asymptotic behaviour of the phase functions is known. 
The possibility of obtairing the phase functions by means of the integration of an appropri- 
ate system of nonlinear first-order differential equations is briefly discussed. 

1. Introduction 

It is known that the Priifer transformation (p?.) (Priifer 1926) is very useful in the 
investigation of the eigenvalues of the one-dimensional Schrodinger operators (defined 
e.g. on the interval (0, CO))  involving potentials represented by a single (‘scalar’) function 
of the coordinate (see e.g. Bailey 1978, Ulehla and HavliEek 1980, Ulehla e l  al 1981, 
Adamova 1981, Adamova and Ulehla 1983, Crandall 1983). In such a case the 
eigenvalue problem defined originally for the Schrodinger equation (SE)  may be 
reformulated in terms of a nonlinear first-order differential equation for the Priifer 
‘phase function’. The phase function possesses some remarkable properties which 
facilitate greatly the evaluation of eigenvalues. Moreover, the above-mentioned non- 
linear first-order equation has favourable properties as regards the numerical integration 
(stability)-see also Crandall (1983), where a modified PT has been used. 

One would like to have an analogous procedure also for a matrix Schrodinger 
eigenvalue problem. However, much less is known in this case. The corresponding 
form of the PT has been introduced by Atkinson (1964) but he has restricted the analysis 
to a finite interval only. Calvert and Davison (1969) have used the Atkinson-Priifer 
transformation (AFT) to develop the oscillation theory for coupled systems of SE and 
applied their results to the numerical evaluation of the eigenvalues. Calvert and 
Davison (1969) have reconstructed the corresponding phase functions by means of a 
direct integration of the Schrodinger system in question. 

The encouraging experience with the method described briefly by Ulehla et al 
(1981) and in more detail by Adamovii (1981) (which is based on a direct computation 
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of the phase function by integrating a first-order differential equation) gave us the 
motivation to investigate the possibility of extending this method to coupled systems 
of radial S E  defined on the half-axis (0, CO). As a first step towards the implementation 
of such a programme we study in the present paper the properties of the Atkinson-Priifer 
(AP) phase functions and find results analogous to the scalar case. Thus, it is possible 
to generalise immediately the fundamental theorems giving the connection between 
asymptotic properties of the phase functions and the eigenvalues. 

The second step should consist in analysing an appropriate system of nonlinear 
first-order differential equations which would provide us with the phase functions 
without referring to the original system of SE. This point will be discussed elsewhere. 

The paper is organised as follows. In § 2 the relevant phase functions are introduced 
by means of a matrix of regular solutions of the coupled system of SE.  In § 3 the 
properties of the phase functions are investigated. Theorems on the eigenvalues 
formulated in terms of the asymptotic behaviour of the phase functions are given in 
§ 4. Some concluding remarks and an outlook are contained in § 5. 

2. Basic definitions and preliminaries 

Let us consider the following system of coupled radial SE defined on the interval (0, a): 

- d ’ u / d x * + ( Y ( x ) - E ) ~ = O  (2.1) 

where U = u(x, E )  is a column vector, Y is a real symmetric n X n potential matrix and 
E is a real parameter, E = - x 2 ,  x > O .  For simplicity we suppose that: 

(i) for any i, j the matrix element Vv(x) is continuous for x E (0, CO) ;  

(ii) for X- ,CO,  the absolute values of the matrix elements V,,(x) with i#j decay 

We look for the solutions of (2.1) satisfying the boundary conditions 
faster than l/x’, whereas V,i(xj may contain a term di /x2 with d, > 0. 

u ( 0 ,  E )  = u(CO, E )  = 0. (2.2) 

The value E for which such a solution exists is an eigenvalue of the Schrodinger 
operator corresponding to (2.1 j .  

Any solution of (2.1) satisfying u ( 0 ,  E )  = 0 will be called regular in what follows. 
The existence of such solutions is guaranteed by the following theorem (Agranovich 
and Marchenko 1963). 

Theorem 2.1. For 9‘- satisfying the condition (i j  and E = -x2, x > 0, there is a funda- 
mental system G(x, xj ,  H(x ,  x) of the solutions of (2.1) (G ,  H are n X n matrices 
formed by columns which are linearly independent solutions of (2.1)) such that for 
some 6 > 0  it holds that 

(2.3) G(x, x) = x(Z +o(xs j ) ,  H ( x ,  x) = I +o(x8)  

( I  = unit matrix) for x + 0’ and the relations (2.3) may be differentiated. 

In the following we shall also need a theorem on the asymptotic behaviour of 
solutions of (2.1) for X-CO (cf again Agranovich and Marchenko 1963). 

Theorem 2.2. For Y satisfying the condition (ii) and E = -x’, x 1 0 ,  there exists a 
fundamental system t#-(x, xj ,  t#+(x, x) (in the matrix form) of solutions of (2.1) such 
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that 

for x + CO and the relations (2.4) may be differentiated. 

4 - ( x ,  x )  = e - x x ( l  +o( l)., 4 + ( x ,  x )  = e+xx(Z +o( l ) ) ,  (2.4) 

Let now U = U ( x ,  E )  be an n x n matrix of regular solutions of (2.1), i.e. the columns 
of U are n arbitrary linearly independent regular solutions of (2.1). Obviously, U 
also satisfies (2.1), i.e. (the prime denotes the derivative with respect to x )  

V ' ( x ,  E )  + Q ( x ,  E )  U ( X ,  E )  = 0 (2.5) 

where V ( x ,  E )  = U ' ( x ,  E )  and Q ( x ,  E )  = E - V ( x ) .  It is easy to show that U may be 
expressed in terms of G (cf theorem 2.1), 

U = GC, (2.6) 

where C is a constant non-singular matrix. We shall define according to Atkinson 
(1964) (we shall refer to this work as A hereafter) 

~ ( x ,  E )  = ( v +iU)(  V--iU)-' .  (2.7) 

In A a theorem is proved stating that the existence of the unitary matrix W is guaranteed 
for any x provided that U'V is Hermitian (U' means Hermitian conjugate of U )  and 
( V - i U ) - '  exists for some x (see theorem 10.2.2, p 305 in A). In our case obviously 
x = 0 has the desired properties owing to (2.3) and (2.6). Also, it follows immediately 
from (2.6) that the form of W does not depend on the particular choice of the regular 
solutions forming the matrix U. It is interesting to note that W is also symmetric 
owing to the symmetry of Q in (2.5). To see this, one has to use the identity ( fi means 
the transposition of U )  

fiv= QU (2.8) 

which can be easily obtained from (2.5) for any regular U. The symmetry of W follows 
immediately from the definition (2.7) and the relation (2.8). Thus, we can summarise: 

Theorem 2.3. Let U be a matrix made up from n linearly independent regular solutions 
of (2.1). Then: 

(a)  W defined by (2.7) exists for any x E (0, C O ) ;  

(b) W is symmetric and unitary for x E ( 0 , ~ ) ;  
(c) the form of W does not depend on the particular choice of the corresponding 

regular solutions. 

In the subsequent discussion we shall also need some important differential 
equations vaiid for the matrix W defined by (2.7) for regular U, namely: 

( d / d x )  W ( x ,  E )  = iW(x, E ) ~ ( X ,  E )  

where 
= 2( V' +iU+)- ' (  V'V + U + Q U ) (  V - iU)- '  

and 

where 
( a / d ~ )  ~ ( x ,  E )  = iW(x, E ) Q ( x ,  E )  

(2.9) 

(2.10) 

(2.11) 

Q = 2 ( v + + i U + ) - '  (1; U+(  t ,  E )  U (  t, E )  d t  (2.12) 
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The relations (2.9)-(2.12) may be proved in full analogy with the proofs given in 
A-cf theorem 10.2.2, p 305 and theorem 10.2.3, p 307 therein. Evidently, both R and 
fi are Hermitian. Note also that fi may be expressed in terms of W and then (2.9) 
takes the form (cf also the relations (10.2.19) and (10.4.19) in A) 

W ‘ =  $[(I + W ) *  - ( I -  W)Q(Z - W ) ] .  

for any x, its eigenvalues o I ( x ,  E ) ,  . . . , w,(x, E )  may be written as 

w , ( x ,  E )  = e’pl(r,E’ , . . . , w,(x, E )  = eiqJx,Ei. 

(2.13) 

We now come to the definition of the phase functions. Since W(x, E )  is unitary 

(2.14) 

Further, W ( 0 ,  E )  = I, so we may set 

Cp,(O, E )  = .  . . = (P,(O, E )  = 0. (2.15) 

According to A it may be shown that cp,(x, E ) ,  j = 1,2, . . . , n, can be continued uniquely 
and continuously so that 

Cp,( X,E)4Cpz(X,E) ~ . . .  dcp,(X,&)S(P,(X1E)+2?T. (2.16) 

The phase functions defined by (2.14)-(2.16) possess a set of remarkable properties 
Although other conventions are also possible, we shall use (2.16) in what follows. 

which will be described in § 3. 

3. Properties of the phase functions 

We shall denote the relevant properties of the phase functions consecutively by Pl-P5. 

P1. Let E = - x 2 ,  x > 0 be fixed. Let x,E(O, CD) and exp[iyk(x,, E ) ] =  1 for some 
k, 1 4 k 4 n. Then (Pk is an increasing function of x at x = x,,. 

The proof can be found in A and is based on (2.9). The point is that for any vector 
w, w # 0, such that W(xo, E ) W  = w it can be proved that 

W * f i ( X O ,  E ) W  = 2w+w 

where n ( x ,  E )  is given by (2.10). That is, R(x,, E )  is positive definite when acting on 
w. Taking into account (2.9), P1 then immediately follows from theorem V.6.2, p 469 
in A. 

P2. Let E = -x2, x > 0. There exists xo( E )  such that if for some k, I S k c n, and for 
some x ,  z x ~ ( E )  one has 

exp[iqk(xl, & ) ] = - I  
then (Pk is a decreasing function of x at x = x I .  

(3.1) 

The proof is again based on (2.9). In analogy with the preceding case it is not difficult 
to show that for any non-trivial vector w satisfying W(x,, E ) W  = --w (cf (3.1)) one has 

wtf l (xI ,  E ) W  =2w+Q(x , ,  E ) W .  (3.2) 
However, with E = - x 2 ,  Q(x, x )  = -x*-.lr(x) and l imx+mV(x)  = O .  Thus, it is easy 
to prove that for a fixed x > O  there exists xo(x)  =x,,(E) such that Q(x, x) is negative 



Eigenvalues via the Atkinson-&fer transformation 2625 

definite for x 3 xo(x). (To see this one has to employ the min-max principle for the 
eigenvalues of V.)  Thus, the LHS of (3.2) is negative for x 2 xo( E )  and P2 then again 
follows immediately from theorem V.6.2 in A. 

P3. Let xo> 0 be fixed. Then any phase cpk(xO, E ) ,  1 s k s n, is a continuous increasing 
function of E (i.e. for E = -x2, cpk(xO, x) is a continuous decreasing function of x ) .  

The proof is based on (2.1 1) and is given in A (see p 308 and theorem V.6.1 therein; 
the point is that the matrix a ( x ,  E )  is positive definite.) 

P4. Choose some E = eo = -xg. c0 is a k-fold degenerate eigenvalue, 0 s  k n ( k  = 0 
denoting the case when c0 is not an eigenvalue) iff there are just k phase functions 
cpj(x, E ~ ) ,  1 s j s  k, for which 

lim tan($p](x, xo)) = - l /xo  

lim tan($pj(x, x o ) )  = +I/%,. 

(3.3) 
X'CC 

and for the remaining ( n  - k) phases 

(3.4) 
X-m 

Pro05 It is sufficient to prove the assertion in one direction only; the inverse can then 
be immediately proved by contradiction. 

Suppose that eo = - x i  is a k-fold degenerate eigenvalue, e.g. 1 s k < n (modifica- 
tions for k = O  or k = n will be obvious). This means that there are just k linearly 
independent regular solutions u;(x, E ~ )  of (2.1) that are linear combinations of the 
columns of the matrix 4-  defined by (2.4). In the rest of this proof we shall employ 
the parameter xo instead of E ~ .  Denote the mentioned columns by cp;(x, xo), . . . , 
cpi(x, x o )  and, similarly, the columns of 4+(x ,  xo) in (2.4) by cp:(x, xo), . . . , cp,'(x, x o ) .  
Thus 

n 

xo) = c A,,cp;(X, xo), i =  1,2, .  . . , k. (3.5) 
/ = 1  

The remaining ( n  - k )  linearly independent regular solutions u:(x, xo) are of the type 
n 

u:(x, x o )  = 2 A,,cp:(x, xo) +terms with cpJ(x, xo), i = k + 1,  . . . , n. (3.6) 
/ = I  

It is easy to see that the linear independence of the solutions (3.5) and (3.6) implies 
the linear independence of the columns {A,,},"=, of the matrix A = {A,,} for i = 1,2, . . . , k 
and i = k + 1, .  . . , n separately. Let us now prove that, in fact, they are all linearly 
independent and, consequently, 

det A # 0. (3.7) 

To this end, we shall employ the identity (2.8) that means that for any pair a, b of 
regular solutions of (2.1) one has 

i b ' - z ' b = O  (3.8) 

for x E (0,m).  
When (3.8) is applied to an arbitrary pair of the type 

a = U;, l s i s k ;  b = U,?, k + l < j s n ,  (3.9) 
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then, using equations (3.5), (3.6) and theorem 2.2, and performing the limit x + CO, we 
obtain the relation 

i = 1, . . . , k, j = k + 1, . . . , n. (3.10) 

Since the columns of the matrix A must be non-trivial, the orthogonality relation (3.10) 
implies the linear independence of {Akz}t=l ,  {Akj};=, for any pair i , j  satisfying (3.9). 
This, in conjuction with the statement following the relation (3.6), leads to the desired 
result (3.7). Note that for k=O or k =  n the relation (3.7) is obvious. 

Let us now consider the characteristic polynomial of W ( x ,  xo) 

P(A ,  x, x o )  = det( W - A I )  

= det[( V + i U ) (  V - iU)- '  - A (  V- iU)(  V - iU)- ' ]  

=det{[(l - A ) V + i ( l  +A)U](V-iU)- '}.  (3.1 1) 

Using the fact that W does not depend on the particular choice of U (see theorem 
2.3), we may choose U so that the first k columns are just U;, i = 1,. . . , k and the last 
( n  - k )  columns are just U:, i = k + 1, . . . , n. Then, using theorem 2.2 and equations 
(3.51, (3.6), equation (3.1 1) may be rewritten, after some manipulations, as follows: 

{e-"ox[-xo(l - A ) + i ( l  + A ) ] } k  
[e-yox(-xo - illk P(A,  x,  xo) = 

{etxox[xo( 1 - A )  +i(  1 + A ) ] } " - k  
[e+X~X(xO-i)]n-k 

X det(A +A)/det(A + S )  

x o  + i n - k  

= (5- A )  '( G- A )  
det(A +A)/det(A +SI (3.12) 

where A=A(A, x,  xo), S =  S(A, x, xo) are some n x n matrices such that 
limx+m A(A, x, xo )  = limx+oc S(A, x, xo). Note that (3.12) holds for any k, 0 s  k < n. 
Obviously, (3.7) now implies that 

lim [det(A +A)/det(A + a ) ] =  1 (3.13) 
x-oc 

and from (3.12), (3.13) we then get for any A 

lim P(A,  x, x o )  = (z:;;  -- h ) * ( e - A ) n - k ,  
x-C€ xo - I  

(3.14) 

Thus, assuming the existence of the limits for x + CO of the eigenvalues of W ( x ,  xo), 
from (3.14) we easily obtain the desired relations (3.3) and (3.4). However, the existence 
of the limits in question is guaranteed by the existence of the limits for x + CO of the 
coefficients of the characteristic polynomial P(A ,  x, xo) (i.e. by (3.14))t.  

P5. For any phase function cp,(x, E ) ,  1 s jc n, there exists 
cpi(x, E )  < 7r for x E (0, CO). 

such that for E < E ~ ,  

Proof The conditions (i), (ii) imposed on the potential matrix V imply that the matrix 
elements of V are bounded for x E (0,m). Consequently, there exists xo so large that 

t We are grateful to B Lonek for explaining this point to us 
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Q(x, xo) = - x i - V ( x )  is negative definite for any x E (0, CO) (cf the proof of P2). Since 
cpj is continuous with respect to x and the condition (2.15) holds, it follows from the 
proof of P2 that for any j = 1 , .  . . , n, cp,(x, E ~ )  with c0 = - x i  must stay below .rr for 
x E (0, CO). Finally, according to P3, for any x E (0, CO) we have cp,(x, E )  < cpj(x, E ~ )  < .rr 
if E < E ~ ,  and P5 is thereby proved. 

We see that the phase functions possess the properties analgous to those of the 
Prufer phase function z relevant in the scalar case (notice the correspondence $cp t, z). 
This leads us to a straightforward generalisation of the theorems relating asymptotic 
properties of the phase functions to the bounds for the eigenvalues of the original 
system of SE, which for the scalar case have been proved by Ulehla and HavliEek 
(1980), Adamovi (1981) and Adamovd and Ulehla (1983). Such a generalisation will 
be the subject of § 4. 

4. Phase functions and the eigenvalue problem 

Theorem 4.1. Let E~ be fixed. Denote by C~,(CO, E ) , .  . . , ( P ~ ( c o ,  E )  the limits 
limx+m cpl(x, E ) ,  . . . , limx+m q n ( x ,  E ) .  Then: 

(I) There exists a positive integer m and a set of three non-negative integers 
{ T I , ,  n,, n3}  satisfying 

O s n , s n , s n 3 s n ,  (4.1) 

if n ,  3 1 then n3 = n (4.2) 

(recall that n is the dimension of the system in (2.1)), such that 

$cpj(0o, eo) = ( m  - l).rr +tan-l(l/J&), 

tcp,(q E O )  = m.rr-tan-I(l/J&), 

+pj(0o, E o )  = m.rr +tan-'(l/&), 

j =  1, .  . . , n , ,  

j =  n ,  + l , .  . . , n2, 
j =  n 2 + 1 , .  . . , n3,  

(4.3) 

(4.4) 

(4.5) 

tcpj(co, Eo)=(m +l).rr-tan-'(l/J-EO), j =  n 3 + 1 , .  . . , n t .  (4.6) 

(11) is an eigenvalue with ( n2 - n ,  + n - n3)-fold degeneracy iff n2 - n ,  + n - n3 > 0.  
(111) 
(IV) There are n(Eo)  = n m  - n, eigenvalues less than E ~ ,  n(Eo) involving each of 

is not an eigenvalue iff n2 - n ,  + n - n3 = 0.  

the different eigenvalues according to its degeneracy. 

The proof is based on (2.15), (2.16) and the properties Pl-P5. 

I( eo)  = (-CO, E ~ ) .  The following holds. 
Now, keep fixed and consider the functions (P,(co, E ) ,  . . . , (P,,(co, E )  in the interval 

Theorem 4.2. (I) For each j = 1, . . . , n the function pj(m, E )  is positive, increasing and 
piecewise continuous in I( E ~ ) .  

(11) E' E I( E ~ )  is an eigenvalue iff E' is a discontinuity point of at least one of the 
functions (o,(co, E ) ,  . . . , Q,(CO, E ) .  

t Equations (4.3)-(4.6) are to be understood in the following sense: if it happens that at least one equality 
in (4.1) takes place, e.g. n, = n2. then there is no phase function with the corresponding property, i.e. for 
n ,  = nz there is no qo, satisfying (4.4). 
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(111) Supposing E' is a discontinuity point of a function pj(m, E ) ,  1 S j S  n, it holds 
that 

The proof follows from the properties P1-P5 and can be carried out in analogy with 
the scalar case (see Adamovi 1981). 

could in principle be determined if 
the functions p,(m, E ) ,  . . . , p,,(co, E )  were reconstructed in and their discon- 
tinuities found. Since we are not able to reconstruct the functions 
p,(m, E ) ,  . . . , p,,(oo, E )  numerically, it is a crucial point that the properties of these 
functions are signalled already by the behaviour of functions cp,(xo, E ) ,  . . . , pn(xo, E )  

with a suitably large but finite xo. 

Thus, all the eigenvalues contained in 

Theorem 4.3. Let E = 
is negative definite when applied to eigenvectors of W(x, E ) ,  E S 

the eigenvalue -1 (cf the proof of P2). Choose some X ~ E  (2, m). Then: 

with the properties (4.1), (4.2) such that 

be fixed and 2 be such that for x > 2 the matrix - V ( x ) )  
associated with 

(I) There exists a positive integer m and a set of non-negative integers { n , ,  n,, n3} 

fcp,(xo, EO) E ( ( m  - l).rr, m.rr-h), 

tcp,(xo, E O )  E (m.rr-t.rr, m.rr), 

ipj(X0, E O )  E ( m r ,  1117~ +in), 

j =  1,2 , .  .., n , ,  

j = n,  + 1, . . . , n2, 

j =  n 2 + 1 , .  . . , n3, 

(4.3') 

(4.4') 

(4.5') 

fp,(xo, E o )  E (m.rr +h ( m  + l).rr), 

(11) There are n(Eo) eigenvalues less than 

j =  n , + l , .  . . , n. (4.6') 

( A  remark analogous to the footnote concerning (4.3)-(4.6) applies also here.) 

which can take on one of the values nm - n2,  nm - n2 + 1,. . . , n ( m  + 1 )  - n ,  - n3. 
n(-s0) being a non-negative integer 

Thus, from the values of the phase functions q,(x, E ~ ) ,  . . . , p,(x, at the point 
xo one obtains the information on the number of eigenvalues less than Moreover, 
reconstructing functions p,(xo, E ) ,  . . . , pn(xo, E )  in the interval for a given xo 
(with the properties required in theorem 4.3) one finds upper and lower bounds on 
each eigenvalue less than The following holds. 

Theorem 4.4. Let eo, xo, m, { n , ,  n,, n3}  be the same as in theorem 4.3. Suppose 
nm - n, 2 1, i.e. there is at least one eigenvalue less than .so, and consider the functions 
cpl(xo, E ) ,  . . . , pn(xo, E )  with xo fixed and E varying within For each j, 1 < j <  n, 
such that cpj(xo, by the 
relations 

3 2 7 ~  define a set of intervals { I i }  satisfying I $ c  

I:, = (E:,, E:,), (4.8) 

(4.9) 

(4.10) 

In this definition, for a given j, k is varying in the range 1,2, . . . , nj where Z, n, = nm - n,. 
The intervals I$ have the following properties. 

(I) Each I:, contains just one eigenvalue E$ < 
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(11) When xo is increased the length of each of the intervals 1: decreases. In the 
limit x 0 + a  each of the intervals 1: degenerates into one point which is just one of 
the eigenvalues E{ < 

The proofs of theorems 4.3, 4.4 are based on (2.15), (2.16) and the properties P1-P5 
in analogy with what has been done for the scalar case (Adamova 1981). 

According to theorem 4.4 one can find intervals each of which contains just one 
eigenvalue less than by reconstructing the functions cp,(xo, E ) ,  . . . , cpn(xo, E )  for 
E E By increasing xo one can in principle make the 'eigenvalue intervals' small 
enough to determine the eigenvalues with the desired accuracy. This is a conclusion 
completely analogous to that obtained earlier for the scalar case (see e.g. Ulehla et a1 
1981, Adamova 1981). Of course, in the matrix case discussed in the present paper 
the situation is complicated by the possible degeneracy of the eigenvalues. 

We conclude this section with a remark concerning the role of the xo value. Mostly, 
already the first choice of xo such that ( Y ( x )  - eo) is positive definite for x 5 xo provides 
one with eigenvalue intervals small enough, i.e. for a given eigenvalue E one gets a 
lower bound E,,, and an upper bound E,,, the distance of which is smaller than a 
required accuracy. Increasing xo one obtains a lower bound &kin and an upper bound 
&Lax and it holds that &Linz 

It may happen that the xo value necessary for reaching a desired accuracy is 
unsuitably large. Then, it is convenient to perform the transformation x + ay, Y ( x )  -$ 

W ( y )  = a 2 Y ( a y ) ,  E + E = a'&, where a is a sufficiently large constant, and use the new 
variable y in the numerical calculations. 

We have performed a great number of eigenvalue calculations for the scalar as 
well as for the matrix ( 2 x 2 )  cases and always obtained eigenvalues with a desired 
accuracy (e.g. to seven or more digits) for reasonably large xo values. 

E;,,S E,,,. 

5. Concluding remarks and an outlook 

We have discussed the phase functions defined by means of the AFT of a coupled 
system of radial SE.  We have shown how the asymptotic behaviour of the phase 
functions can be employed to find the eigenvalues of the original Schrodinger system. 
The results are analogous to the scalar case except that in the matrix case, instead of 
one, several phase functions have to be investigated simultaneously and degenerate 
eigenvalues may occur. 

The next step should be the practical determination of the phase functions. Moti- 
vated by the scalar case we propose to employ a suitable system of first-order nonlinear 
equations either for the matrix W ( x ,  E )  or for the phase functions themselves. 

As regards the first possibility, one may use the Riccati-type equation (2.13) together 
with the initial condition W ( 0 ,  E )  = I. Standard theorems on the uniqueness of the 
solutions of differential equations then obviously guarantee the one-to-one correspon- 
dence between (2.13) supplemented with the above-mentioned initial condition and 
the original system of SE.  In such an approach the matrix W should be diagonalised 
in the course of the integration of (2.13) and the phase functions reconstructed to be 
continuous with respect to x and (eventually) satisfy (2.16). 

As to the second alternative (finding a system of equations for the phase functions), 
it may be implemented at least in the case of 2 x 2  potential matrices, when W can be 
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easily diagonalised explicitly. Nevertheless, the situation is somewhat more compli- 
cated than in the scalar case and the corresponding nonlinear first-order differential 
system as well as the results of numerical calculation will be discussed elsewhere. Note 
that a system of nonlinear first-order equations based on an alternative transformation 
of the original system of SE has been already discussed by Ulehla (1982). 

Finally, we would like to add the following comment. In this paper we have 
considered, mostly for the sake of technical simplicity, only the regular potential 
matrices satisfying (i), ( i i) .  Of course, a number of physically interesting examples 
are described by potential matrices with singularities of various types, e.g. due to 
Coulomb-like or ‘centrifugal’ ( -  l /x*) terms singular at the origin, or due to ‘confining’ 
terms ( -xm, a > 0) singular for x + CO. We have investigated also some of these singular 
problems (the corresponding analysis will appear elsewhere). 

Firstly, we have analysed the asymptotic behaviour of the phase functions for x +CO 

for potential matrices with confining terms at the diagonal. In this case each of the 
phase functions goes to a multiple of 27r for x + 00 and a given E is a k-fold degenerate 
eigenvalue iff k of the phase functions approach their limits for x + oc from below and 
( n  - k) from above. 

Secondly, we have investigated problems with 2 X 2 potential matrices involving 
Coulomb-like and centrifugal singularities at the origin and checked that the theorems 
given in the present paper apply also to this case. 

Generally, considering problems with n x n potentials singular at the origin, n 2 2, 
we expect that the results given in the present paper are relevant also in these cases. 
I t  is known that some authors, working up a problem with such a potential numerically 
and trying to avoid computational difficulties, utilise the approach based on regularising 
the original potential near the origin so as to satisfy (i), ( i i )  (see e.g. Reid 1968, Pham 
and Richard 1977 and references therein). Then the results of the present paper are 
directly applicable. 

Note that this approach is justifiable only if the sought solutions of the corresponding 
differential equations are asymptotically stable (we have in mind the asymptotic stability 
discussed e.g. by Bellman and Cooke (1963)). This stability property is necessary to 
ensure that the solutions obtained by the numerical integration of the equations with 
the regularised potential approach the proper solutions corresponding to the original 
singular potential for large x. Motivated by our experience with the scalar eigenvalue 
problems as far as the stability properties are concerned (AdamovB and Ulehla 1983) 
we expect that the relevant solutions of the first-order nonlinear equations discussed 
in the present paper are asymptotically stable. Work on these problems is in progress. 
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